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Abstract: Our study developed a fourth-order numerical code in space and a third-order in time with dynamical
turbulence model. This code was applied to study turbulence transition in shear driven cavity flow in bi and three-
dimensional configurations. The simulations had been carried out for bi and three-dimensional configurations.
The two dimensional simulations were performed to be compared with results presented in the literature in order
to validate the developed code, as well as to define the best parameters for the simulations in three-dimensional
configuration. The Reynolds numbers were taken as 3200, 10000, 25000, 50000 and 100000. The simulations
of cubic shear driven cavity flow with Reynolds numbers 3200 and 10000 were compared with results presented
in the literature. Two-dimensional simulation was performed without turbulence model, and three-dimensional
simulations were performed using the Smagorinsky and Germano models for sub-grid scale. The topological
physical nature was analyzed and some important new physic characteristics were pointed out.
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1 Introduction
In the mid-twentieth century, researchers had great in-
terest in flows in rectangular cavities with sliding lid.
This is evidenced by [1], one of the pioneers at study-
ing this problem numerically, and [2], who conducts
numerical and experimental studies. Moreover, recent
works such as [3] and [4] indicate that this geomet-
ric configuration continues to arouse interest. In the
first study, the authors conducted a numerical study in
a cubic cavity flow with a Reynolds number of 1000.
The latter is a numerical study on the transition from
laminar flow to chaotic in two-dimensional configura-
tion.

Among the practical applications of the flow in
shear driven cavity, we have liquid fllms deposition
process on a surface [5]. Another application indi-
cated by [6] is the smelting flow within the cavities
used for the manufacture of microcrystalline materi-
als. Regarding the flow of which the cavity is an ide-
alization, we can mention the flow of notches and slots
on repeated heat exchangers walls or surfaces of air-
craft bodies [7].

A critical point for the development of modern
engineering and for understanding the physics of tur-
bulent flows is the analysis of the progress and topol-
ogy of flows. In this context, numerical simulations
are more accurate for detailed experimental measure-

ments of the flow, such as confirmation of the lat-
eral vortices obtained in the laboratory ([8] ). As
the Reynolds numbers is nearly 1300, it is considered
that the flow in shear driven cavity enters transient,
but still laminar ([5] and [8] ). The transition to tur-
bulence occurs at a Reynolds number between 6000
and 8000. The transition to turbulence occurs at a
Reynolds number between 6000 and 8000, in different
regions of space, starting in the region of the posterior
secondary vortex ([9] and [6] ). For Reynolds number
above 10000, the flow is completely turbulent.

Among experimental works in cavities, it is worth
mentioning the studies of [10]; the authors performed
experiments using injection and particulate ink dis-
play to visualize and study the flow in wells with
Reynolds number of 1000, and transverse aspect ratio
of 2:1. The obtained results indicated that injection of
ink at initial flow velocities in the cross direction of
the side walls propagate to the plane of symmetry.

In terms of Large Eddy Simulation (LES), we
have a work by [11]. This study compares results
obtained with the Smagorinsky model using various
wall models and the results obtained with the dynamic
Germano model. The article [12] proposed the dy-
namic sub-grid model, and the authors state that the
Smagorinsky model is the most commonly applied
sub-grid model; still, they review the Smagorinsky

WSEAS TRANSACTIONS on FLUID MECHANICS A. F. A. Pinho, J. G. Coelho, A. S. Neto

E-ISSN: 2224-347X 125 Volume 10, 2015



constant values previously employed, concluding that
it is impossible to simulate the entire range of phe-
nomena present in the fluid flows using only a univer-
sal constant.

The objective of this study is to analyze these
transient structures in flows in shear driven cavity
with Reynolds number of 10000, 25000, 50000 and
100000. For this study, we developed a computa-
tional code of finite differences to the solution of the
Navier-Stokes equations for incompressible flow with
constant properties. This code was implemented with
different second- and fourth-order centered discretiza-
tions for the velocity and Smagorinsky and Germano
sub-grid models. Initially, tests were performed in
two-dimensional configuration with Reynolds num-
bers 1000, 3200, 5000 and 10000. These tests estab-
lished the program parameters, mesh to be used, form
of discretization, solver, etc. Subsequently, simula-
tions were performed in three-dimensional configura-
tion. We simulated a stationary case with Reynolds
number of 1000; and if the Reynolds number is 3200,
which is considered laminar. This case was designed
to validate the code in three-dimensional configura-
tion. The objective of the cases used in this study
and the simulation of flow Reynolds number of 10000
was to verify the performance of sub-grid Smagorin-
sky model and dynamic sub-grid Germano model. As
the latter presented the most satisfactory results. it
was applied in the simulations of flow Reynolds num-
ber of 25000, 50000 and 100000.

2 Mathematical Formulation
The governing equations for the proposed problem is
the continuity and momentum equations. By applying
the filter, we obtain

∂uj
∂xj

= 0 (1)

∂uj
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where ∂ is the Partial differential operator, u the ve-
locity component, t the time, ρ the density, υ the kine-
matic viscosity, τij the sub-grid tensor and αij the
Cross term of Navier Stokes equation.

For the turbulence, Boussinesq (1877) proposed a
sub-grid tensor model similar to the model of viscous
strains. For this purpose, the concept of eddy vis-
cosity in the boundary layer on an infinite flat plate.
Kolmogorov (1942) proposed a generalized form of

the hypothesis Boussinesq, which became the method
currently applied [13], submitted in Eq. 3

τij = −2υSij +
2

3
δijτij . (3)

where Sij is deformation tensor and δij the Kronecker
delta.

Smagorinsky, following the idea of mixing length
model Prandtl [14] proposed a sub-grid model with
eddy viscosity proportional to the characteristic length
of mesh at a characteristic sub-grid speed . Length of
the mesh is an obvious choice; speed should be re-
lated to the speed of small scales of the order of speed
variation on a mesh element [13]. Therefore, eddy
viscosity is

υt = (CS∆)2
√

2SijSij (4)

where υt is the eddy viscosity and Cs the Smagorin-
sky constant

For flows near the walls, this model fails since the
deformation rates in this region are very high, gener-
ating elevated values to the eddy viscosity. However,
these values should be low since turbulence decreases
as it approaches the wall. The dynamic model pro-
posed in [12] suggests an adjustment of the dynamic
sub-grid model varying in space and time. Based on
the Smagorinsky model, the Germano model adjusts
an coefficient of proportionality between the eddy vis-
cosity and the deformation tensor module. In this
case, the coefficient is obtained by:

C =
1

2

LijMij

MijMij
(5)

where Lij and Mij are Germano tensors

2.1 Numerical Method

Our study used a fully explicit second-order method
Adams-Bashforth for both advective and diffusion
speed terms, and a fully explicit for pressure,

(ϕn+1 − ϕn)

∆t
= −G(pn+1) +

3

2
[ϕn)]− 1

2
[S(ϕn−1)] (6)

where Φ is any of velocities, G(p) the pressure gradi-
ent and S(Φ) the Advective terms.

Coupling pressure-velocity is carried out by using
the method of pressure correction. A velocity field is
estimated considering the pressure field in the previ-
ous time. The applied spatial discretization is centered
differences for both advective and diffusive term. Dif-
ferences used centered second- and fourth-order for
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speed. The difference in the results obtained with the
two discretizations are given in Results. For pressure,
only second-order discretization was employed.

The cases studied in this work consist of cav-
ities, therefore, we used exclusively the the wall
with imposed speed condition. For the imposition of
boundary conditions, we used the facilitation ofvirtual
points consisting of points outside the domain [15].

In all of the studied cases, the solver used for
the pressure equation was the modified strongly im-
plicit procedure (MSIP), such as the formulation in
[16].With this method, solving the linear system is a
highly accurate, fast and robust procedure. The lin-
ear system is solved up to a pre-established minimum
residue 10−6 for two-dimensional case, and 10−4 for
three-dimensional cases.

3 Results

3.1 Two-Dimensional Cavities
We simulated two-dimensional cases with Reynolds
numbers of 1000, 3200, 5000 and 10000, obtained
with second- and fourth-order discretizations and
meshes with 55, 75 and 95 points in both directions.
These comparisons were performed using the profile
of the velocity component u in the cavity vertical cen-
ter line (x = 0.5) and the profile of the velocity com-
ponent v in a line horizontal to the cavity center (y =
0, 5).

For an analysis on the convergence order achieved
with the discretization methods, we use the solutions
obtained with Reynolds number of 10000. Since there
is no steady state for this solution, the values indicate
are averages of time; in all of the cases obtained be-
tween 1 and 3 seconds. Oscillations due to the ini-
tial transient were damped, with the flow statistically
steady.

Figure 1 indicates the mean errors calculated
through Eq. 7 with respect to the results of [17] for
the solutions obtained for Reynolds number 10000.
The solutions obtained with second-order discretiza-
tion maintain this convergence throughout the range
of the number of points shown for both the velocity
component u as for component v. Regarding the so-
lutions obtained with fourth-order discretization, we
observed that the mesh solution obtained with 55
points in both directions for the obtained mesh with
75 points convergence is slightly larger than a second-
order convergence. However, between the solution
using 75-point mesh and 95-point mesh convergence
reaches fourth order, which is probably due to the ac-
tion of the boundary conditions of the second order,
as explained in [18]

Figure 1: Mean error of velocity profiles for Reynolds
number 10000 calculated in [17].

e =

√∑
(ui − u)2

n
(7)

The results of this convergence can be observed
by comparing the profiles of velocity components u
(Fig. 2) obtained with 95-point mesh in both direc-
tions and with second- and fourth-order discretization.
It appears that in the former, velocities do not reach
maximum and minimum speeds, although capture the
shape of the curve consistently; the latter approached
the critical points established through reference re-
sults.

The mesh influence on the solution through fourth
order discretization is illustrated in Fig. 3, with the
profile of the velocity component of profile v. We
can observe that only the solution through fourth-
order discretization and 95x95 mesh reaches the crit-
ical points of the reference solutions; the remaining
two solutions fail even to determine the positions of
these points.

Since it was the only solution with results very
close to the reference, it is preferable to use the
95x95mesh with fourth-order discretization is for sim-
ulations in three-dimensional cavities.

Figure 4 indicates the profiles of u velocity com-
ponents for the solutions obtained with Reynolds
number 1000, 3200 and 5000, obtained using fourth-
order discretization and mesh with 95 points in both
directions. The results are compared with [17]; the
profiles proved to be in great accordance with each
other. The average errors obtained were 10−5 for the
solution of Reynolds number 5000.

Figure 5 illustrates the vorticity field superim-
posed by a set of flow lines indicating the center of
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Figure 2: Comparison of velocity component profiles
u at y = 0.5 Reynolds number 10000 obtained with 95
x 95 mesh.

Figure 3: Comparison of velocity component profiles
v at y = 0.5 for Reynolds number 10000 obtained with
fourth-order discretization.

Figure 4: Comparison of the profiles of velocity com-
ponent u x = 0.5 obtained with 95 x 95 mesh and
fourth-order discretization.

structures formed for the case with Re = 5000. We
clearly have central circulation secondary vortices on
the lower corners, which becomes higher with increas-
ing Reynolds number. Figures 6 and 7 indicate the
average field obtained with discretization of second-
and fourth-order, respectively,presenting little differ-
ence between them , except for the small vortex on
the lower left corner, not presented in the solution of
second- order discretization. This topology was pre-
dicted by [19].

3.2 Three-dimensional cavities
For tri-dimentional cavities, results were obtained re-
garding five cases - Reynolds of 3200, 10.000, 25.000,
50.000 and 100.000, with 95 x 95 x 65 mesh for all
of the cases, time step of 0.005, and fourth-order dis-
cretization. Turbulent kinetic energy spectra were ob-
tained using k signal by averaging temporal samples,
numbering 8 per sample. The analysis of flow topol-
ogy used current lines, isosurfaces of vorticity and cri-
terion Q, which is is defined in [20].

The results obtained for flow Reynolds number
3200 are shown below. This simulation was per-
formed with 0.001s time step. In Fig. 8, u profile
is compared with both the experimental [7] results
and the numerical [21] results, indicating good accor-
dance, with a slight overestimate speed at minimum
speed point of the u velocity component profile.

In Fig. 9, the root mean square of velocity
(RMSv) profile is compared with the experimental re-
sults obtained by [7]. In Fig. 10, the experimental UV
profile obtained is compared with the same authors re-
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Figure 5: vorticity fields with superimposed stream-
lines in steady flow for Reynolds number 5000, ob-
tained with discretization of fourth order, 95 x 95
mesh and time step 10−3.

Figure 6: Average vorticity field with superimposed
streamlines for Reynolds 10000, obtained with dis-
cretization of secound-order and 95 x 95 mesh

Figure 7: Average vorticity field with superimposed
streamlines for Reynolds number 10.000, obtained
with discretization of fourth-order and 95 x 95 mesh.

Figure 8: Comparison of component profiles of veloc-
ity u, z = 0.5 and x = 0.5 for Reynolds number 3200
with literature data.
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Figure 9: Comparison of RMSv profiles at z =0.5 and
y = 0.5 for Reynolds number 3200 with literature data.

sults, indicating a good accordance. We can observe
that the shape of the profile is captured by the data;
however, the fluctuation peaks are not achieved, espe-
cially in the turbulent region, as the top and bottom of
the cavity.

The u profile obtained without sub-grid model,
with Smagorinsky and the dynamic Germano model,
is compared with the experimental results obtained by
[7], illustrated in Fig. 11 indicating no significant dif-
ferences in the obtained velocity profiles.

In Fig. 12, the RMSv profile obtained without
sub-grid model, with Smagorinsky model and the dy-
namic Germano model are compared with the ex-
perimental results obtained in [7]. Figure 13, the
UV profile obtained without sub-grid model with the
Smagorinsky model and the dynamic Germano model
are compared with experimental results obtained by
the same authors. Observe a good agreement between
the results shown.

The same observation is made for the profiles in
the flow Reynolds number equal to 3200 can be per-
formed in this case. However the dynamic Germano
model best captures the curves format. The Sam-
gorinsky model proves to be very diffusive, since this
model redistributes the kinetic energy of the largest
regions for smaller intensities. This can be seen, can
be seen with greater intensity in Fig. 13.

Figure 14 illustrates the u proflle obtained with
the dynamic Germano model compared with the ex-
perimental results of the[7] and the numerical results
of the [21]. It appears that the dynamic Germain
model presents better correlation of the results for
Reynolds numbers 10.000 than the absence of mod-

Figure 10: Comparison of UV profiles at z =0.5 and x
= 0.5 for Reynolds number 3 20 0 with literature data.

Figure 11: Comparison of profiles of velocity compo-
nent u, z = 0.5 and x = 0.5 for Reynolds number 10000
with literature data.
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Figure 12: Comparison with literature data and be-
tween the profiles of RMSv z= 0.5 and y = 0.5 for the
same Reynolds number 10,000.

Figure 13: Comparison of UV profiles z = 0.5 and x
= to 0.5 and Reynolds number 10000 with literature
data.

Figure 14: Comparison of profile component of ve-
locity u, z = 0.5 and x = 0.5 for the same Reynolds
number 10000 obtained with dynamic modeling with
literature data.

eling for the same Reynolds number 3200, indicating
that the mesh is insufficient for direct simulation, even
for the lowest Reynolds number. Therefore, even in
this case, the turbulence modeling is required,

Figure 15 indicates the streamlines plotted in the
planes z = 0.12 and z = 0.62. In the foreground, the
streamline is a structure with a spiral flow from the
center to the outside. However, in planes that intersect
the central r e circulating structure, streamline has two
distinct motions; the first is external from the center to
the periphery, and the second is internal, with opposite
direction.

In the flow with Reynolds number 50.000, the
bifurcation in the posterior secondary vortex of the
mean flow continues to appear, as indicated in Fig.
16. This case presented a blurring at the bifurcation
point with streamlines with flows toward the sym-
metry plane or towards the side walls, depending on
whether it is an inner or outer structure. This case also
presents a strong asymmetry in the average results in
relation to the plane of symmetry, which is probably
due to preferential directions adopted in the solution
of the correction of the linear system pressure through
MSIP method.

Figure 17 illustrates the central line current re-
circulation of the mean flow with Reynolds number
100000. Observe the recirculation with reverse flow
shown in the flow Reynolds number of 50,000. In this
case, this recirculation extends to the vicinity of the
side wall submitted to deformations peculiar to the re-
gions of the vortex influence and the side of the central
counter-rotating structure. The nearest to the plane of
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Figure 15: Streamlines in the plans z = 0.12 and z =
0.62 of the flow average for Reynolds number 50000.

Figure 16: Streamlines in the secondary vortices of
the mean flow to Reynolds number thinning 50000.

Figure 17: Streamlines in the central recirculation of
the mean flow for Reynolds number equal to 100000.

symmetry region suffers thinning both the internal and
the external flow. In the vicinity of the internal side-
wall, tapers flow and return flow indicated by follow-
ing the pressure are lateral to the plane of symmetry

In the flow Reynolds number 100000, a flow di-
vision process initiated with the bifurcation of the
posterior secondary vortex is consolidated, which oc-
curs with the onset of counter-rotating structure. This
structure defines a distinct flow pattern by deforming
the streamlines to the central circulation,which is indi-
cated in Fig. 17 presenting a very deformed structure.

Figure 18 shows the velocity profile in the direc-
tion x. It is observed that the flow at higher Reynolds
numbers there is a reverse tendency to increase the
value of peak velocity in the lower region. Some fac-
tors lead to the conclusion that the behavior described
influenced by the presence of counter-rotating struc-
ture. First, this mass pumps structure plan for the re-
gion symmetry. Second, because this behavior is en-
hanced in the flow Reynolds number equal to 100,000,
wherein the formation is consolidated structure. And
finally, because where there is the presence of this
structure, as in the posterior region, this behavior is
not observed. For comparison, the velocity peaks are
indicated in Tab. 1, 2 and 3.

Figures 19 and 20 indicate RMSu (root mean
square of velocity u) and RMSv profiles, respectively.
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Figure 18: Comparison between the profiles of the ve-
locity component u, z = 0.5 and x = 0.5.

Table 1: Minimum velocity points in the velocity pro-
file in x direction at z = 0.5 and x = 0.5.

Reynolds number y position u velocity
10.000 0.0368 0.1815
25.000 0.0368 0.1285
50.000 0.0263 0.1358

100.000 0.0263 0.1517

Observe the highest energy peaks of the lid next to
higher Reynolds numbers (Fig. 19). This is an ex-
pected behavior; it indicates a smaller influence of the
wall on speed fluctuations as the value of this parame-
ter increases. However, in the region close to the pos-
terior wall (Fig. 20) ) RMSv, the peaks have opposite
behavior, decreasing value and approaching the wall.
This behavior is repeated in the lower wall region,
a possible explanation is that for higher Reynolds
number, most of the fluctuations occur in the smaller
ranges shaped for their energy to be not computed.

Table 2: Maximum velocity points in the velocity pro-
file in y direction at z = 0.5 and y = 0.5.

Reynolds number x position v velocity
10.000 0.0474 0.1186
25.000 0.0368 0.0904
50.000 0.0368 0.0947

100.000 0.0263 0.1152

Figure 19: Comparison between the RMSu profiles at
z = 0.5 and x = 0.5.

Figure 20: Comparison between the RMSv profiles at
z = 0.5 and x = 0.5.

Table 3: minimum velocity points in the velocity pro-
file in y direction at z = 0.5 and y = 0.5.

Reynolds number x position v velocity
10.000 0.9737 0.3623
25.000 0.9737 0.3170
50.000 0.9842 0.2462

100.000 0.9737 0.2152
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4 Conclusions
The results point that the tool is designed to obtain nu-
merical solutions of Navier-Stokes equations with re-
liability, both for dimensional and three-dimensional
configurations. Results obtained with this tool have
good accordance with experimental and numerical
results in the literature; however, no results with
fourth-order discretization with centered differences
are indicated. Regarding the three dimensional case,
Reynolds number of cases 3200 and 10000 have val-
ues of mean velocity profiles in good accordance
with experimental data and data number in the litera-
ture. This study simulated flow Reynolds numbers of
25000, 50000 and 100000; these flows presented very
different aspects. Flow at Reynolds number 25000
presented topology almost equal to flow Reynolds
number 10000, while flow Reynolds number 50000
presented a recirculating structure in the central re-
gion of reverse flow to the central recirculation. In
addition, this flow presented no well-defined counter-
rotating structures of Taylor-Grtler. Flow Reynolds
number 100000 presented central recirculation struc-
ture with fully developed reverse flow, extending to
the vicinity of the side walls. This case is presented
under the influence of a pair of counter-rotating struc-
tures in the central region, with a toroidal shape, and
extend from the bottom wall of the lid cavity to near
the front wall. This structure generates a mass flow to
the central region, reversing the tendency to decrease
the speed peak in the velocity profile in the x direction
of the plane of symmetry for Reynolds number up to
25000.
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